
JOURNAL OF COMPUTATIONAL PHYSICS 9, 398-411 (1972) 

Numerical Aspects of Momentum-Space 
Scattering Equations for Peaked Potentials* 

MICHAEL L. ADELBERG AND ALVIN M. SAPERSTEIN 

Department of Physics, Wayne State University, Detroit, Michigan 48202 

Received June 8, 1971 

Several programming techniques are suggested for solving partial wave scattering 
equations in momentum space when the potential matrix, as a function of momentum 
variables, is strongly peaked about the scattering singularity. In particular, an algorithm 
is described that makes use of the second Born approximation to estimate error in 
performing principal value quadratures. For a given required accuracy, one obtains 
a region of integration about the singularity and a Gauss-Legendre quadrature on this 
region whose truncation error equals the error due to discarding the region away from 
the singularity and whose order is much lower than that required by full region quadra- 
ture to get the same accuracy. Considerable saving in computer time is achieved. 

I. INTRODUCTION 

There has been recent and extensive interest in solving scattering equations in 
momentum space for several energy ranges, including the low-energy Fadeev 
equations [l], intermediate-energy optical models [2], and high-energy pseudo- 
potentials [3]. The essential idea of all these approaches is to reduce the Lippmann- 
Schwinger equations to a Fredholm-type integral equation with a compact kernal 
[4]. Under slightly more restrictive conditions, it has been shown that the kernal 
can be represented by a matrix of finite rank, so that the problem becomes one of 
solving a system of simultaneous linear equations. 

In this paper, elementary but useful numerical aspects are discussed for scattering 
equations in momentum space when the potential is rotationally invariant, 
reciprocal, smooth, and very peaked, so that in terms of the momentum-space 
representative, 

(P’ I v I P> = VW, P, 41, Q = P’ - P, (1) 

(P’ I v I P> = (-P I v I -P’>, (2) 

VP’? PY 4) * 0 only when p’ w p, p mkorp<k,andqlkwO, (3) 
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where k is the center-of-mass momentum at the incident energy E. These conditions 
hold at intermediate and higher energies for nuclear optical models and elementary 
particle potentials. The primary purpose of this paper is to show how, for such 
potentials, observables can be very rapidly calculated to an accuracy easily within 
that warranted by experimental data. 

An algorithm is presented which is most useful for potentials, 

whose major characteristic is that the shape [i.e., the strong peaking described 
by (3)] is primarily determined by the form factor F, which does not change over 
a series of runs. One can then examine the effect on the observables caused by 
varying parameters from which Y is constructed. For example, in nucleon-nucleus 
impulse potentials, the form factor is well determined experimentally by electron- 
nucleus scattering; the quantities to be varied-which determine v-are the 
nucleon-nucleon phase parameters and the off-shell extensions to the nucleon 
T-matrix. Here, the shape of the potentials is dominated by the form factor and 
it thus becomes worthwile to exert some effort to obtain an accurate yet efficient 
numerical procedure, which can then be used for many similar potentials, differing 
slightly in shape due to variations in v. 

In the exposition, the scattering equations are written only for the spin-zero 
case; moreover, a detailed numerical analysis is made only for the example of a 
real Gaussian potential. However, we stress that it is not necessary to assume that 
the potential is local, real, or spin independent. In particular, we note at the conclu- 
sion the results for a realistic nucleon-nucleus optical potential that is nonlocal, 
complex, and spin dependent. In fact, use of momentum-space equations is most 
advantageous for nonlocal potentials because no localization approximation 
(which is invoked ad hoc. so as to avoid solving an integrodifferential equation) 
need be performed. In momentum space, locality has no special role, and the 
peakedness of the potentials at energies above 100 MeV is overwhelmingly their 
most significant numerical feature. In addition, the potentials have often been 
evaluated in momentum space and then Fourier transformed into coordinate 
space; this is both wasteful and unnecessary. 

II. MOMENTUM-SPACE SCATTERING EQUATIONS 

When there is no spin, an angular-momentum decomposition of the single- 
channel, nonrelativistic, Lippmann-Schwinger equation gives [5] 
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where Tz and V, are angular-momentum partial wave projections of the momentum- 
space matrix elements of the barycentric operators T and V. All quantities are 
unitless so that the elastic cross section is given by 

40) = / C CLTL(I, IIlk Pdcos @ I’> Cl = 21 t 1, 

where PE are Legendre polynomials and z, z’, z” are ratios of the momentum 
variables to their on-shell value k. (All omitted arguments have the value 1.) 
The only physically relevant matrix element is T, , but in order to obtain it, one 
must solve the Fredholm equation [5], for the half-shell vector: 

T,(z) = V,(z)(l - iT,) + ; P j, $$ Vdz, z’> TW, (7) 

where P stands for Cauchy principal value. In practice, this is accomplished by 
selecting a finite set of points to represent the momentum variable so that (7) 
becomes a system of simultaneous equations. Henceforth, we shall omit writing 
the angular-momentum index, 1. 

Actually, (7) is inconvenient both for analysis and computation because it is 
complex even for real potentials and it includes the singular point, z = 1. By simple 
transformations, it is possible to write equivalent equations for the reaction matrix 
and the half-off-shell factor obtained by Fredholm reduction [6] 

R(z) = V(z) + $ P Jr +Jg V(z, z’) R(z’), 

H(z) = V(z)/V + ; j‘r f$ [ V(z, z’) - V(z) V(z’)/ V] H(z’). (9) 

These functions are related to the scattering matrix by 

and 

H(z) = T(z)/T = R(z)/R (10) 

T = R/(1 + iR). (11) 

Equation (9) is not singular, and the singularity of (8) presents no difficulty, 
in our example, for energy greater than 50 MeV, while in both equations the value 
z = 1 is excluded. The phase shifts are obtained from (8) and (11) by using 

R-V+17 (12) 
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with 

W) R(z). (13) 

The principal value quadrature in (13) yields the numbers n, which, along with 
the V1, provide the total physical content of the elastic scattering. Thus, assuming 
that the numerical angular-momentum projection yielding VL(z, z’) is performed 
with reasonable accuracy and efficiency, the speed and error obtained in calculating 
the observables is determined by the technique used to solve (8) and then perform 
(13). 

III. PRINCIPAL VALUE QUADRATURE 

It is possible to subtract out the singularity that occurs in (13) by breaking the 
range of the integration variable into (0, 1) and (1, co) and then mapping the latter 
into the former by the transformation l/z, so that one obtains 

n = ; jy& [z”V(z) R(z) - V(l/z) R(l/z)/z2]. 

This procedure has the advantages of being easy to apply to integrands whose 
functional form is unknown when quadrature points are selected and of simul- 
taneously handling the singular nature of (8). Therefore, a set, zi , including points 
in (0, 1) and their reciprocals in (1, 00) are selected to represent the momentum 
variable, along with z = 1 which is excluded from the set. For any such choice, 
the quadrature (14) is approximated by the sum, 

where the weight wi depends on the quadrature rule employed. The accuracy, 
even for a given n, with which (15) evaluates the principal value, depends very 
sensitively on the selection of points. 

1V. SYMMETRIC-MATRIX EQUATION 

One can make use of the symmetry imposed upon V(z, z’) by reciprocity to 
obtain a system of simultaneous linear equations whose matrix of coefficients is 
symmetric. First, define a diagonal matrix D whose i-th diagonal element is fl 
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when zi > 1 and -1 when zi < 1. Now define the elements of the vectors and 
matrix to be 

Wi = Dii [$ (WiZi’)/(l - iiz)]l”, $i = min(z, , l/Z(), (16) 

Vi = Wil/(Z,), (17) 

Ri = I W I R(G), (18) 

Vij = Wf WjV(Z+ ) Zj)* (19) 

With the above definitions, (8) and (13) become 

and 

II = -2 ViRi) (21) 
i=l 

respectively, where N = 2n. The reason for maintaining the symmetry in (20) is 
that, for real Vij , approximately N3/3 multiplicative operations are needed to 
obtain a solution in general, but only N3/6 when the matrix of coefficients is 
symmetric [7]. When the potential is complex the fastest available algorithms require 
about 23 times as many multiplicative operations as in the real case. It is therefore 
an economic necessity to keep N as small as possible in order to keep computing 
costs within reason. 

Furthermore, for large N, floating-point rounding errors can lead to large errors 
in the solution. Typical estimates [8] of this error indicate that it is proportional 
to the rounding error per operation (about lo-’ single precision for IBM System 
360), to some. power between 2 and 3 of the order of the system of equation, and 
to the condition of the matrix of coefficients. This last number is defined as the 
square root of the ratio of the largest to smallest eigenvalue of the product of the 
matrix and its Hermitian conjugate. When using an algorithm to solve (8) 
symmetrically, it is particularly important that the matrix be well conditioned 
(here the condition times N2 should be much less than 107) because symmetry must 
be maintained at each step so that pivoting is allowed only along the main diagonal 
[9]. In our example, at the higher E or higher Z, the matrices, D + V, are diagonally 
dominant and have conditions near unity. Even at the lowest E considered for 
1 = 0, the solution of (20) is accurate (as verified by back substitution) to at least 
four decimal places. 
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V. QUADRATURE ALGORITHM 

It is difficult to numerically integrate (14) because the peaking of the functions 
in the integrand is different on either side of z 1 1. The standard rules of Gaussian 
quadrature do not work well over the whole region (0, 1); in fact, 4- and &point 
midpoint rules out-perform Gauss-Legendre [lo] rules of the same order. In this 
section, we present a heuristic procedure for obtaining a quadrature rule that is 
both efficient and accurate. 

First, to measure accuracy, we give the following definition of error: 

x = II I-I - nI, II/II I-I II, (22) 

where IIA is the value of (15) produced by our algorithm and II is the “exact” 
value of (14) (as calculated by a higher-order quadrature). All vectors in (22) and 
subsequently are indexed by angular momentum and the vector norm is defined as 

I/ I-I II = 1 CL 117, I. (23) 
2 

The purpose of our procedure is to provide an estimate for X so as to allow the 
most efficient program for a given upper bound on X. However, it is stressed 
that X can only be found by solving (20) for n and nI, . 

Next, to estimate X, we use the first- and second-order Born approximations 
to the phase shift which, respectively, are given by 

where 

R m v, (24) 

(25) 

Q = ; ,: & [z”v2(z) - v2( ‘1 /z)/z”]. (26) 

The first approximation (24) is good when V is small! , i.e., high energy of large Z, 
while the second (25) gives only an order of magnitude for low energy or small 1. 
The usefulness of Eqs. (24)-(26) is that they give a fair estimate of the shape of the 
exact integrand (14), and-in estimating the accuracy of integration procedures- 
it is shape and not magnitude of the integrand that counts. The algorithm makes 
use of the peakedness of the integrand of (26) by simply discarding the region of 
integration that does not contribute significantly to the quadrature. The discard 
error, caused in the evaluation of Q, is given by 
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where Q,&$ is found by subtracting pairs of values [as in (Is)] from Q,&O), 
which is evaluated with a 25-point midpoint rule; thus, Q&z,,) are evaluations of 
(26) on the intervals (z,, , 1). Also, on these intervals, evaluations are made using 
several orders (labelled by n) of Gauss-Legendre. The truncation error is defined 
to be 

XT”@,) = II Q(zo> - Qn(zoM Q(zo)ll. (28) 

This error is an estimate of how well the Gauss-Legendre rule can be expected 
to perform the quadratic (26) on the interval (zO , 1). Here, Q(z,,) is presumed to be 
“exact” and is obtained using the largest order considered; we used up to 32 points, 
but this is excessive when only single precision is used; 16 points are entirely 
adequate. 

The basic assumption made-to be justified in the next section by examination 
of a numerical example-is that the sum of X,“(z,) and X,(z,,) is a good estimate 
of X when n and .zO are chosen so that X,“(z,,) < X,(z,). In other words, a good 
representation of Q implies IYI is well represented. Furthermore, there is no point 
to having a truncation error less than the discard error; the latter can be very small, 
even for large values of z,, , because of the rapid fall-off of the potential. Large z,, 
means a small region (zO, 1) so that relatively few Gaussian points are needed 
for acceptable truncation errors; in fact, considerably fewer are needed than 
would be needed to give the same truncation error over the entire interval (0, 1). 
The points of intersection of the curves for the XTn(zO) with X,(z,) are labeled Z, ; 
thus, the algorithm finds, in addition to the error estimate of 2X,(Z,), an interval 
(Z,, , 1) on which n-th order Gauss-Legendre quadrature is to be performed. 

VI. NUMERICAL EXAMPLE 

In this section, the usefulness of the algorithm just described is demonstrated 
for a Gaussian potential used to represent intermediate energy II - C elastic 
scattering [ll]. In momentum space this potential is 

(2% 

where V,,’ = 2pkd/21/4b3V, , b = 2.85 F, V, = -33.1 MeV, and TV is the reduced 
nucleon mass. Expressing the square of momentum transfer in the exponential 
in terms of k, z, and z’, the reduced matrix elements are given by 

V$(Z, z’) z Vo’e-“‘Z-*“2 

J 

n dB sin 0 P,(cos 19) e--2azz’+-c08e), a = (1/2kb)2, (30) 
0 
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where the normalization is consistent with (8) and (20). The exponential factor in 
front of the integrand is primarily responsible for the strong peaking, while the 
integral goes as (zz’)l as z or z’ approaches zero. 

In Fig. 1, at 25, 50, 100, 200, and 400 MeV, X, is drawn with solid lines, while 
XTn are drawn with dashed, dash-dot, and dotted lines for n = 4, 8, and 16, 
respectively. The intersections, 2, , at each energy, of the curves are indicated by 
solid circles. As a first check on the algorithm, II and HI, were calculated with (20) 

FIG. 1. Discard and truncation errors as a function of integration interval and incident energy: 
A’&,) are drawn with solid lines, while A’~~(q,j are drawn with dashed, dash-dot, and dotted 
lines, for II = 4, 8, 16, respectively. The intersections, 2, , are indicated by solid circles. Open 
circles are the values of X at the energies corresponding to 2, , while the small x’s are the values 
of XTs(O). 



406 ADELBERG AND SAPERSTEIN 

and (21) using the Gauss-Legendre rules on (Z, , 1) and (Z, , l), respectively. 
At each 2, position, the value of X resulting from (25) is indicated by an open 
circle and X,*(O) is indicated by a small X. The figure shows that the discard and 
truncation errors, which are defined in the second Born approximation, give a 
good estimate of X, which is obtained only after the equations (20) are solved. 
Furthermore, above 100 MeV, the open circles lie below the corresponding x, 
so that better accuracy as well as superior eficiency can be expected of these four- 
point rules than of the full range eight-point rules. Similar comparison of the 8- and 

12 
I 

0 15 30 45 t 

CENTER OF MASS ANGLE 8 

FIG. 2. Error in cross section as a function of center-of-mass angle and incident energy: 
X&J) are drawn with solid lines for energies of 25, 50 and 100 MeV, and with dashed and dotted 
lines at 200 and 400 MeV, respectively. Open circles indicate the position of the diffraction 
minimum. 
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16-point rules on the graph indicates that the truncation error of the full-range 
16-point rule is roughly the same as the total error of our 8-point rule. In fact, 
above 400 MeV the full-range procedures soon give truncation errors in excess of 
20 y0 while the amputated-range algorithm remains accurate to within a few 
percent up to 1600 MeV. The n = 4 and it = 8 curves were smoothed somewhat 
to improve legibility; straight lines were drawn through the z,, = 0 and z,, = 0.1 
points to indicate the trends of the n = 16 curves, which tended to oscillate 
wildly. This oscillation occurs even with double precision calculations because, 
even on the same interval, different-order Gaussian quadratures use completely 
different sets zi . The numerical-decomposition procedure used to obtain the 
vectors Vi was accurate at best to five decimal places, so that below the 1O-5 line 
the truncation error curves are not reliable. 

In Fig. 2, the relative error in the cross section, 

is drawn as a function of angle for the energies in Fig. 1. Here, u(e) and aA are 
calculated from the n and rlA just obtained. Even at very large angles (well beyond 
the first diffraction minimums which are indicated by open circles), X,(0) lie well 
below the corresponding values of X or even of XT4(Z4) = X,(z,). Hence, in this 
example, the discard error itself provides a useful estimate of the error involved 
in computing observables like differential cross section. Similar results have been 
obtained for real and complex harmonic potentials that have been used to describe 
intermediate energy it - C scattering. The eight-point solution for 100 MeV 
Gaussian and harmonic potentials has been compared with the exact partial wave 
coordinate space calculation used in [II]; on a log plot, no discrepancy can be 
seen up to and just beyond the first diffraction minimum. 

VII. FURTHER SUGGESTIONS AND REMARKS 

Other Programming Steps 

This paper has concentrated on keeping the numbers of points, N + 1 = 2n + 1, 
used to represent the momentum variable z, to a practical minimum and on the 
solution step in the program, whose computation time is proportional to NS. 
Essentially all the remaining computer time is consumed in setting up the potential 
and taking its angular decomposition. Let L be the number of partial waves that 
contribute significantly to the scattering amplitude and let A4 be the number of 
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angles at which the input potential matrix is to be computed. Then, for real 
potentials, the following are estimates of the computation time for each step: 

SET-UP: SN2Mn,P ; (32) 

DE-COMP: SN2ML; (33) 

SOLVE: SN3/6L. (34) 

Here, S is l/2 when the potential is symmetric, 1 otherwise, and n02, is the number of 
multiplicative operations needed to set up each potential matrix element. If full 
use of symmetry is made, 50 o/0 of computation time is saved: use of our algorithm 
to half N saves an additional 75 y. of what remains. 

Reduction of M in the Decomposition 

This saving of 8.5 y. of computational time for a given fixed accuracy should be 
adequate for most budgets. However, the potentials that are peaked in momentum 
variables are also strongly peaked in angle. In our example, the back hemisphere 
does not contribute to the first four places of V, for energy greater than 100 MeV. 
Furthermore, as is the case for the principal value quadrature, a straightforward 
numerical decomposition integration becomes decreasingly accurate as energy 
increases since the distribution becomes more peaked. It seems likely that a similar 
algorithm can be found to reduce A4 with either no change or even an increase in 
accuracy; however, this is complicated by the fact that the vector Vi and the matrix 
Vij as well as the single element V, must be calculated by the given angular 
decomposition procedure. 

A Realistic Example: Complex, Nonlocal, and Spin Dependent 

The above numerical analysis came about as a result of an attempt to extend the 
work of Chalmers and Saperstein [12] in order to investigate the effect on inter- 
mediate energy nucleon-nucleus cross section and polarization of taking the 
nucleon T-matrix off its energy shell. The potentials used by these authors were 
evaluated and their scattering equations were solved in momentum space. In 
addition to being complex and spin dependent, these potentials are nonlocal, so 
that the use of momentum-space scattering equations is particularly advantageous. 
In [12] scattering equations based on (7) using tenth-order Gauss-Legendre 
quadrature were solved using 21 points to represent the momentum variable in 
their matrices (z = 1 was included). The resulting real matrices were 42 by 42 
since the complex matrix equation that comes from (7) has the form 

(A + iB)(x + iy) = a + ib, (35) 
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which leads to the real matrix equation, 

On the Model 67 of IBM System 360, this original program, whose input was on 
and off shell nucleon-nucleon phase parameters, form-factor constants, etc., and 
whose final output was cross section and polarization, required over five min CPU 
time. 

With the algorithm described here, using the reaction-matrix formulism to yield 
symmetric complex matrices, A’ + iB’, and the corresponding vectors as indicated 
in Section IV and handling these complex matrices by the following more efficient 
alternative to (36), the run time was reduced to less than 11 set CPU time. Probably 
the best way to solve the symmetric equation equivalent to (35) is to first find the 
matrix solution to A’C = B’, whose transpose is equal to #A’-‘, and use this 
result in 

[A’ + (B’A’-I) B’](x’ + iy’) = [I - i(B’A’-l)](a + ib’), (37) 

fully exploiting the symmetry of (37). This procedure takes the same number of 
multiplicative operations as the symmetric version of (36), 

(38) 

but is more accurate and faster because less pivoting occurs in performing the 
triangular decomposition of two N-th order matrices than of one 2N-th order 
equation. 

For it - C scattering at 142 MeV, the new procedure using n = 4 reproduces 
to within 2 y0 those Tl that resulted from the old procedure with n = 10, and the 
cross section and polarization are nearly indistinguishable at less than 45” center- 
of-mass scattering angle. At 310 MeV (p - C), there is a significant difference 
in the value of the polarization at the diffraction minimum (23”); this value is 
proportional to the difference of the nearly equal spin-flipped and not-flipped 
cross sections; however, this value is very poorly determined experimentally, so that 
the numerical difference just noted was less than half the experimental uncertainty. 
Our work indicates that the faster procedure is also the more accurate, because the 
truncation error of the full-range IO-point rule is larger than that of the optimum 
4-point rule. 

Energy Below 50 MEV 

We have concentrated on intermediate energies and found the techniques sug- 
gested in this paper to be adequate for strongly peaked potentials. At energies below 
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50 MeV, even our Gaussian example becomes reasonably flat so that breaking the 
interval (0, co) into (0, 1) and (1, a) may not be preferable to using an even-order 
Gaussian quadrature on an interval (0,2) symmetric about the pole z :- 1 and 
evaluating the integral on (2, co) with some other rule [13]. Furthermore, the first 
Born approximation is very poor (i.e., 111 is of the same order of magnitude as V,) 
for the few partial waves that contribute to the scattering amplitude, so that the 
principal values must be calculated to at least three-place accuracy, if the resulting 
R, are to be good to two places. Finally, at these low energies, the matrices D + V, 
which come from (8) are not sufficiently well behaved to give better than three- 
place accuracy; however, the matrix equations arising from (9) are probably far 
more accurate; work at 142 MeV for complex potentials has shown the solutions 
to the Fredholm reduced equations are over one place more accurate than those 
of the R-matrix equation (20), since the condition of the resulting Fredholm matrix 
is smaller than that of the comparable R-matrix. 

Energy Above 400 MEV 

At higher energies very many [15] partial waves contribute significantly to the 
scattering amplitude; the V,(z) become so very strongly peakeddven on the 
intervals (Z, , I)-that Gauss-Legendre quadrature becomes very inefficient. 
Preliminary investigation indicates that other types of Gaussian quadrature [14] 
then become more efficient. The use of the second Born approximation to the 
phase shift (25) has been investigated [I 51 and found useful for the larger I included 
in the decomposition. Our own investigation shows that at each energy in our 
example both the Ql and IIz change sign at the same 1. Before this change occurs 
the Ql overestimates the 17, greatly; afterwards, the approximation (25) soon is 
quite good. At high energies many partial waves are still significant after the change 
in sign occurs, so that this approximation is useful. Finally, the numerical decom- 
position of the potential into partial waves is difficult and the resulting decomposed 
elements should be checked for accuracy. 
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